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Abstract. We discuss various aspects of mechanical systems with general (nonlinear) non-
holonomic constraints from the perspective of presymplectic geometry. We begin by introducing
a 2-form on the evolution space of a system having the property, among others, of modelling the
unconstrained dynamics. Using this 2-form we then characterize a unique second-order dynamics
on the constraint submanifold through a simple geometrical implementation of Chetaev’s concept
of virtual work. We also give necessary and sufficient conditions in order for the reduced dynamics
to admit a non-holonomic Lagrangian formulation. Finally, we study the structure of a set of vector
fields on the constraint submanifold which generates all first integrals of a constrained system.
The relationships with a previously proposed set of vector fields in non-conservative holonomic
mechanics and with known generalizations of Noether’s theorem for non-holonomic systems are
analysed.

1. Introduction

Despite the long history of non-holonomic mechanics, the establishment of a geometric
context allowing one to produce practical links with corresponding problems in holonomic
mechanics still requires much development, mostly concerning symmetries and first integrals.
The main difficulty consists in the fact that, contrary to the holonomic case, a symmetry of
a non-holonomic system does not yield in general a constant of the motion. On the other
hand, in the last few years several papers (see, e.g., [16] and references therein) have been
concerned with the problem of constructing first integrals of non-holonomic systems by means
of transformations defined in one way or another. The purpose of the present paper is to analyse,
within the framework of presymplectic geometry [33], some aspects of the dynamics of non-
holonomically constrained systems with a focus on first integrals and their generators. The
analysis is carried on in a frame-independent language, using the standard tools of jet-bundle
theory. Recent progress in this direction have been made by, among others, Bates and Śniatycki
[2], Koiller [13], Giachetta [11], Cushman et al [8], Bloch et al [4], de León et al [14, 15],
Massa and Pagani [20–22], Marle [19], Sarlet et al [28, 29], Śniatycki [32], Morando and
Vignolo [23], Saunders et al [30], Giachetta et al [12], Cortés and de León [6].

An outline of the main results of this paper is as follows. Let τ : E → R be a fibre
bundle and π : J 1τ → E its first-order jet bundle. As is well known [7] (see also [33],
p 132), given a second-order differential equation (SODE) field ξ on J 1τ , one can construct
a 2-form � of maximal rank on the same manifold such that ξ is a characteristic vector field.
The construction of this 2-form is based on an Ehresmann connection � on J 1τ → E such
that the given SODE field ξ is contained in its horizontal distribution. Let i : C ↪→ J 1τ

be an embedded submanifold fibred over E representing some (in general, nonlinear) kinetic
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constraints imposed on a mechanical system. Although there is no general agreement in the
literature about the mathematical scheme to deal with nonlinear non-holonomic constraints,
the most widely spread model (and that used in this paper) is based on the so-called ‘Chetaev
rule’, whose geometrical significance is clarified by the construction of the Cheatev bundle
[22]. Building on the d’Alembert principle, which is assumed to remain valid in the general
case, we show that the cotangent bundle T ∗C of the constraint submanifold decomposes in a
four-way split. This splitting determines a SODE field ξ̂ on C whose content comprises, by
construction, both Chetaev’s rule and d’Alembert’s principle, so it characterizes the dynamics
of a non-holonomic system. This is much the same way as in the holonomic case in which
the tangent bundle T J 1τ of the evolution space decomposes into a direct sum of three vector
bundles, one of which is spanned by the SODE field ξ [7]. An immediate corollary of our
theorems is the characterization given in [30] (see also [28, 29]), for Lagrangian systems, of
the reduced dynamics on the constraint submanifold as the unique SODE field in the one-
dimensional kernel of a certain 2-form (derived from the Cartan 2-form).

Let �̂ be the pull-back of the 2-form � on C. In [23], the authors introduce the notion of
a non-holonomic Lagrangian for a SODE field on the constraint submanifold. This is a pair
consisting of a function on C and a Chetaev form (i.e. a section of the Chetaev bundle) by
means of which one can construct the analogue of the Cartan 1-form. For each SODE field
on C obtained in the way explained above, we give a necessary and sufficient condition in
order for it to be derivable from a non-holonomic Lagrangian. Essentially, this can be stated
as d�̂ ∈ dI, where I denotes the ideal generated by the module of Chetaev forms. It turns out
that this condition also plays an important role in the subsequent discussion on vector fields
generating first integrals.

Motivated by [5], in the second part of the paper we consider a set V of vector fields on
the constraint submanifold which directly generate first integrals of the constrained dynamics.
More precisely, we show that there is a one-to-one correspondence between equivalence classes
of vector fields in V , where two vector fields are identified if they differ by a multiple of ξ̂ , and
equivalence classes of first integrals, where two first integrals are equivalent if their differentials
differ by a Chetaev form. We note that V contains (in fact is much larger than) the ‘special
class of Noether vector fields’ considered in [23]. The set of vector fields studied in the present
paper is also related to some extent with several works (see, e.g., [16]) aimed at a generalization
of Noether’s theorem for non-conservative non-holonomic systems. In particular, V can be
regarded as the geometrical counterpart of the set of infinitesimal transformations which are
the solutions of the so-called generalized Killing equations.

Many properties of the corresponding set of vector fields in the non-constrained case [5]
also hold for V . The vector fields in V are not in general dynamical symmetries. We show that
in order for this to be the case it is enough that the constraint submanifold is integrable and
d�̂ ∈ dI. Actually, under these conditions we recover, on every leaf of C, the characterization
of Noether symmetry for holonomic systems. Another circumstance in which every vector
field in V is a dynamical symmetry occurs when the SODE field ξ̂ is a symmetry, i.e. it preserves
both the 2-form �̂ (up to an element of I) and the Chetaev bundle.

The scheme of the paper is as follows. In section 2 we recall some basic features of
jet spaces which are needed for a frame-independent description of a mechanical system.
Moreover, we show how to characterize the dynamics using a 2-form of maximal rank on the
evolution space defined by means of an Ehresmann connection. In section 3 a basic geometric
set-up is laid out that enables one to model velocity-dependent constraints. Here we discuss
the way in which the (Chetaev) definition of virtual displacement and the d’Alembert principle
lead to the determination of a unique SODE field on the constraint submanifold. We also study
the conditions under which such a SODE field is derivable from a non-holonomic Lagrangian.
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In section 4 we study the relationship between first integrals on the constraint submanifold and
their generators. Among others topics, the discussion includes the relations of these generators
with dynamical symmetries and their role in well known results about a generalized version
of Noether’s theorem for non-conservative non-holonomic systems. The last section contains
some illustrative examples.

Throughout the paper all objects are smooth (i.e. C∞). All manifold are real, finite-
dimensional, second-countable (hence paracompact) and connected. For convenience, we
usually do not distinguish between a vector bundle and the set of its smooth sections. The
only exception to this rule is the use of D(M) and C∞(M) for the set of smooth vector fields
and the set of smooth functions on a manifold M , respectively. The Lie derivative of a form
α with respect to a vector field X is denoted by LXα, whereas the inner product of X and α is
written as Z�α. Finally, X(h) denotes the Lie derivative of a function h with respect to X.

2. Preliminaries

Let E be the configuration spacetime manifold of a mechanical system, with the usual fibre
bundle structure τ : E → R over the absolute time and standard fibre M . At this stage we
only focus on the positional constraints of the system, the additional kinetic constraints are
described in a subsequent step. AlthoughE will be trivial, i.e.E ∼= R×M , no one trivialization
of it is to be preferred to any other. Consequently, by working in this way we shall ensure
that all our formulae are tensorial with respect to time-dependent coordinate transformations.
From the physical viewpoint, a trivialization of E → R corresponds to a frame of reference.

Every section γ : R → E represents a possible history of the system. Therefore, the
first-order jet manifold J 1τ can be regarded as the totality of admissible kinetic states of the
system. We shall now review some aspects of the geometry of J 1τ . More details can be found
in [10, 31].

2.1. Geometry of J 1τ

From an algebraic viewpoint, we recall that π : J 1τ → E is an affine bundle modelled on
the vector bundle V τ → E of vectors tangent to the fibres of τ , henceforth called the vertical
bundle over E. By definition, both V τ and J 1τ may be identified with corresponding sub-
bundles of the tangent bundle T E. Introducing coordinates (t, qi) on E, (t, qi, q̇i) on J 1τ

and (t, qi, ṫ , q̇i) on T E, J 1τ and V τ are locally defined by ṫ = 1 and 0, respectively. If
dim E = n + 1, then dim J 1τ = 2n + 1 and dim T E = 2n + 2.

Any coordinate transformation (t, qi) → (t ′, q ′i ) on E, where q ′i = q ′i (t, qj ) and t ′ = t ,
induces a transformation of velocities given by

q̇ ′i = ∂q ′i

∂t
+

∂q ′i

∂qj
q̇j . (1)

The affine structure of J 1τ → E guarantees that the vector bundle Vπ → J 1τ of
vectors tangent to the fibres of π , hereafter called the vertical bundle over J 1τ , is canonically
isomorphic with the pull-back bundleπ∗V τ . By means of this identification we can lift vertical
vectors from E to J 1τ . In local coordinates this lift reads

X = Xi ∂

∂qi

→ Xv = Xi ∂

∂q̇i
. (2)

The ordinary Euclidean structure of the physical 3-space induces a symmetric bilinear form
g on the vertical bundle V τ , henceforth called the fibre metric, which is a frame-independent



5372 G Giachetta

attribute of E → R. The positivity condition g(X,X) > 0 holds for all vertical vectors X �= 0.
In local coordinates the fibre metric is represented by the matrix

gij = g

(
∂

∂qi
,

∂

∂qj

)
.

Note that, by means of the vertical lift, we can regard g as a bilinear form on the vector bundle
Vπ . According to (2), locally we put

g

(
∂

∂q̇i
,

∂

∂q̇j

)
= g

(
∂

∂qi
,

∂

∂qj

)
. (3)

We also recall that J 1τ admits a canonical linear endomorphism J : T J 1τ → T J 1τ ,
henceforth called the vertical endomorphism, which generalizes the vertical endomorphism
on a tangent bundle. Its coordinate expression is given by

J = θ i ⊗ ∂

∂q̇i
θ i = dqi − q̇ i dt. (4)

A glance at (4) shows that the kernel of J is the (n + 1)-dimensional distribution on J 1τ

spanned by J 2τ , the second-order jet manifold of τ : E → R, whereas the image of J is Vπ .
By duality, the vertical endomorphism gives rise to a morphism J ∗ : T ∗J 1τ → T ∗J 1τ which
locally reads

J ∗ = ∂

∂q̇i
⊗ θ i .

Elementary considerations yield that the image of J ∗, hereafter denoted by C(J 1τ) and called
the contact bundle over J 1τ , coincides with the annihilator of the kernel of J . The sections
of the contact bundle will be called contact 1-forms. A local basis of C(J 1τ) is provided by
θ i = dqi − q̇ i dt .

An Ehresmann connection on the bundle J 1τ → E is a vector sub-bundle of T J 1τ which
is complementary to the vertical sub-bundle Vπ . The corresponding distribution on J 1τ is
called the horizontal distribution. Later on, we refer to an Ehresmann connection always in
terms of the vertical projection � : T J 1τ → T J 1τ which defines it. In local coordinates this
map reads

� : �i ⊗ ∂

∂q̇i
�i = dq̇ i + �i

0 dt + �i
j dqj (5)

with �i
0, �i

j ∈ C∞(J 1τ). Let �∗ denote the dual endomorphism of �. Its image, hereafter
denoted by F(J 1τ), coincides with the annihilator of the horizontal distribution. Locally we
have

�∗ = ∂

∂q̇i
⊗ �i

so that a local basis of F(J 1τ) is provided by the 1-forms �i .
Note in passing that C(J 1τ)∩F(J 1τ) = {0}, C(J 1τ)∩〈dt〉 = {0} and F(J 1τ)∩〈dt〉 = {0}.

A dimensional counting thus leads to the direct sum decomposition of vector bundles

T ∗J 1τ = F(J 1τ) ⊕ C(J 1τ) ⊕ 〈dt〉.
The 1-forms �i , θ i and dt form a local basis of T ∗J 1τ adapted to this splitting.
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2.2. Dynamics

Let the equations of motion of a system be defined by a second-order differential equation
field ξ on J 1τ . Recall that ξ is a section ξ : J 1τ → J 2τ , viewed as a vector field on J 1τ . Its
coordinate expression takes the form

ξ = ∂

∂t
+ q̇ i ∂

∂qi
+ ξ i ∂

∂q̇i

where ξ i ∈ C∞(J 1τ). Locally the integral curves of ξ are the solutions of the system of
differential equations

q̈ i = ξ i(t, qj , q̇j ). (6)

Alternatively, the equations of motion can be regarded as geodesic equations for an
Ehresmann connection � on J 1τ → E [11]. The condition to be satisfied by such a connection
is that ξ takes values in the corresponding horizontal distribution, i.e. �(ξ) = 0. Recalling
(5), we find that in local coordinates this condition reads

−�i
0 − �i

j q̇
j = ξ i . (7)

Note that any two solutions � and �′ of (7) differ for a soldering form σ : J 1τ → T ∗E ⊗Vπ

whose coefficients σ i
0, σ i

j satisfy the equations σ i
0 + σ i

j q̇
j = 0. Although the condition

�(ξ) = 0 is not enough to determine the connection uniquely, there is, however, a canonical
choice which has been described in many papers (see, for example, [7, 27]), so will not be
repeated here. We content ourselves with giving the expressions for the coefficients �i

0, �i
j ,

which are

�i
0 = −ξ i +

1

2

∂ξ i

∂q̇j
q̇j �i

j = −1

2

∂ξ i

∂q̇j
. (8)

In order to gain further insight into the meaning of a connection on J 1τ → E, let
us assume that E is a four-dimensional affine bundle over R. We denote by qi and q ′i ,
i = 1, 2, 3, the Cartesian coordinates of a particle with respect to two frames of reference,
with the corresponding transformation formula given by q ′i = Ai

j (t)(q
j + Rj(t)). Here Ai

j

is an element of the group SO(3) and Rj belongs to R
3. Then according to (1) we have

q̇ ′i = Ai
j (q̇

j − Uj) where Uj = ω
j

k (q
k + Rk) − dRj/dt is the drag velocity and ω

j

k is an
element of the Lie algebra of SO(3). Given a connection � on J 1τ → E, we denote by �i

0,
�i

j and �′i
0, �′i

j its connection coefficients in the two frames. From the formula for the change
of the connection coefficients under a coordinate transformation (see [18], p 163), we find that

�′i
j = Ai

k(�
k
h − ωk

h)(A
−1)hj

�′i
0 = Ai

j

[
�

j

0 + �
j

kU
k − ω

j

k (q̇
k − Uk) − V j

]
where V j = (ω2)

j

k(q
k +Rk)+dωj

k/dt (qk +Rk)−d2Rj/dt2 is the drag acceleration. It follows
from (7) that the force (per unit mass) ξ acting on the particle changes according to the well
known relation

ξ ′i = Ai
j

[
ξ j + 2ωj

k (q̇
k − Uk) +

(
(ω2)

j

k +
dωj

k

dt

)
(qk + Rk) − d2Rj

dt2

]
. (9)

In the subsequent discussion � will always be the connection defined in (8). We shall
refer to it as the dynamical connection.
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With the objects introduced so far, we define a 2-form on J 1τ as follows:

�(X, Y ) = g(�(X), J (Y )) − g(J (X), �(Y )) ∀ X, Y ∈ D(J 1τ). (10)

A glance at (3)–(5) leads immediately to the coordinate expression

� = gij�
i ∧ θj . (11)

The importance of this 2-form relies in the fact that the dynamics of a mechanical system can
be obtained directly from its kernel. For, it is easily seen that X ∈ Ker � iff J (X) = 0 and
�(X) = 0, i.e. iff X is annihilated by all contact forms and all forms in F(J 1τ). In local
coordinates, putting X = X0∂/∂t + Xi∂/∂qi + Ẋi∂/∂q̇i , these conditions read

Xi − q̇ iX0 = 0

Ẋi + �i
0X

0 + �i
jX

j = 0.

Hence X belongs to the one-dimensional distribution on J 1τ spanned by the SODE field ξ .
Let us make some remarks on the 2-form �. First of all, note that it is a frame-independent

attribute of a mechanical system. As is well known (see, for example, [7]), the closure of �

(d� = 0) is locally equivalent to the existence of a Lagrangian L ∈ C∞(J 1τ) such that
� = dωL, where

ωL = L dt +
∂L
∂q̇i

θ i (12)

is the corresponding Cartan 1-form. In this case the equations of motion are equivalent to the
Euler–Lagrange equations for the Lagrangian L, that is,

ξ i = gij

(
∂L
∂qj

− ∂2L
∂q̇j ∂t

− ∂2L
∂q̇j ∂qk

q̇k

)
(13)

where gij is the inverse matrix of gij = ∂2L/∂q̇i∂q̇j .
Going back to the general case (d� �= 0), let L ∈ C∞(J 1τ) be a given regular Lagrangian

and ξL the corresponding Lagrangian SODE field on J 1τ (see (13)). Then the SODE field ξ

describing the dynamics of a system can be written as ξ = ξL + Q, where Q = Qi∂/∂q̇i is
a vertical vector field on J 1τ representing a dissipative force. The dynamical connection (8)
takes the form � = �L + σ , where �L is the dynamical connection associated with ξL and σ

is the soldering form

σ i
0 = −Qi +

1

2

∂Qi

∂q̇j
q̇j σ i

j = −1

2

∂Qi

∂q̇j
.

A straightforward computation then leads to the following expression for �:

� = dωL + �Q (14)

where �Q is the semi-basic 2-form over E with the local expression

�Q = 1

4

(
∂Qi

∂q̇j
− ∂Qj

∂q̇i

)
θ i ∧ θj + Qiθ

i ∧ dt. (15)

Here we have put Qi = gijQ
j .

One further remark is perhaps worth making here. The definition of � does not involve
the choice of any a priori Lagrangian. This is an important feature, not only because it enables
us to carry out the analysis in a frame-independent language, but also in view of the well
known fact that the symmetries of the 2-form � are often greater than the symmetries of the
Lagrangian.
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3. Systems with constraints

3.1. Geometry of the constraint submanifold

Let i : C ↪→ J 1τ be an embedded submanifold of J 1τ fibred over E with fibre dimension
m. The meaning of C is that of imposing some external velocity-dependent constraints on a
mechanical system. Locally the embedding i can be represented either by equations

q̇ i = ψi(t, qj , za) (16)

with

rank

(
∂ψi

∂za

)
= m (17)

where (t, qi, za) are coordinates on C, or by n − m equations

φµ(t, qi, q̇i) = 0 (18)

with

rank

(
∂φµ

∂q̇i

)
= n − m. (19)

Following Chetaev’s ideas on the extension of the concept of virtual displacement to the
class of non-holonomic nonlinear constraints [24, 25], we define a virtual displacement of the
system in the kinetic state z ∈ C as a vertical vector Y ∈ Vπ(z)τ such that its vertical lift Y v

(2) belongs to TzC.
We denote by H the pre-image of VC = Vπ ∩ T C with respect to the vertical

endomorphism J . It is easily seen that H is a sub-bundle of T J 1τ |C with fibre dimension
n + m + 1. If z ∈ C is an admissible kinetic state of the system, then a tangent vector X ∈ Hz

can be regarded as an infinitesimal variation of z (variation of time, coordinates and velocities)
whose corresponding variation J (X) of the spacetime configuration π(z) ∈ E is a virtual
displacement in the sense of Chetaev.

Let us consider the annihilator Ho of H in T ∗J 1τ . We have that Ho = J ∗(T Co),
where T Co is the annihilator of T C in T ∗J 1τ . Indeed, it can be immediately verified
that J ∗(T Co) ⊂ Ho; a dimensional counting then leads to the stated equality. To obtain
the coordinate description of H and Ho we use the representation (18) for the constraint
submanifold C. Since the differentials dφµ span T Co, it follows that Ho is generated by the
linearly independent 1-forms

J ∗(dφµ) = ∂φµ

∂q̇i
θ i . (20)

Hence a vector field X = X0∂/∂t + Xi∂/∂qi + Ẋi∂/∂q̇i belongs to H iff

∂φµ

∂q̇i
(Xi − q̇ iX0) = 0. (21)

Let K be the intersection H ∩T C. Due to the fact that C is fibred over E, it is easily seen
that K is a (2m+ 1)-dimensional distribution on C. Consider the annihilator Ko of K in T ∗C.
Following [22], we shall refer to it as the Chetaev bundle. Its sections will be called Chetaev
1-forms. Since K = H ∩ T C, the Chetaev bundle coincides with the pull-back over C of Ho.
From (20) we derive a local basis for the Chetaev forms, which is given by

ηµ = ∂φµ

∂q̇i
θ̂ i θ̂ i = dqi − ψi dt. (22)
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We shall say that the constraintC (or more precisely, the fibrationπ : C → E) is integrable
iff K is a (completely) integrable distribution or, equivalently, iff the ideal I generated by the
module of Chetaev forms is a differential ideal. This, in turn, can be shown to be equivalent
to the property that C admits at least one local representation (18) of the special form [22]

φµ = ∂ϕµ

∂t
+

∂ϕµ

∂qi
q̇i = 0

withϕµ ∈ C∞(E). Consequently, every leaf ofK can be locally represented as the jet manifold
of an (m + 1)-dimensional submanifold of E fibred over R.

Let ĝ be the symmetric bilinear form on VC obtained by evaluating the fibre metric g on
vertical vectors which are tangent to C. By means of ĝ we can define an orthogonal projection
P : Vπ |C → VC according to the relation

ĝ(P (X), Y ) = g(X, Y ) ∀X ∈ Vzπ Y ∈ VzC

and also the direct sum decomposition

Vπ |C = VC ⊕ VC⊥ (23)

where VC⊥ is the kernel of P . Accordingly, each vertical vector X ∈ Vzπ can be written in
the form X = X′ + X⊥ with X′ ∈ VzC and X⊥ ∈ VzC

⊥. Using (16) we find the coordinate
expressions

gab = ĝ

(
∂

∂za
,

∂

∂zb

)
= ∂ψi

∂za

∂ψj

∂zb
gij (24)

P

(
∂

∂q̇i

)
= 9a

i

∂

∂za
9a

i = gab ∂ψ
j

∂zb
gij (25)

with gacgcb = δab .
Owing to the projection P , the vertical endomorphism J induces a map Ĵ : T C → T C

according to the relation

Ĵ (X) = P ◦ J (X) ∀ X ∈ D(C).

From (4) and (25) we find the local expression

Ĵ = θa ⊗ ∂

∂za
θa = 9a

i θ̂
i . (26)

Let Ĵ ∗ : T ∗C → T ∗C be the dual endomorphism. Its image is a vector sub-bundle of T ∗C,
hereafter denoted by V ∗C. From (26) we see that θa is a local basis of V ∗C.

Lemma 1 (see [22]). The bundle C(C) of contact 1-forms on C decomposes into a direct sum
of vector bundles, namely,

C(C) = V ∗C ⊕ Ko. (27)

Proof. We show that V ∗C ∩ Ko = {0}. A dimensionality argument will then complete the
proof. Since V ∗C is the image of Ĵ ∗ it coincides with the annihilator in T ∗C of Ker Ĵ . This
latter, in turn, is the set of vectors X ∈ T C such that J (X) ∈ VC⊥. On the other hand, by
definition Ko is the annihilator of K , which is the set of vectors X ∈ T C such that J (X) ∈ VC.
It follows that a 1-form ω ∈ V ∗C ∩ Ko annihilates all vectors in T C, hence ω = 0. �

Note that the above proof (unlike that given in [22]) does not make use of the non-
degeneracy of the fibre metric. In fact, the decomposition (27) takes place under milder
regularity assumptions on g, namely, the non-degeneracy of ĝ.
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For later purposes, we give here the decomposition of the contact forms θ̂ i according to
lemma 1. Certainly, we can write θ̂ i = Ri

aθ
a + Si

µη
µ for some coefficients Ri

a , Si
µ ∈ C∞(C).

Recalling that θa = 9a
i θ̂

i and ηµ = ∂φµ/∂q̇i θ̂ i , these coefficients are determined by the
relation

Ri
a9

a
j + Si

µ

∂φµ

∂q̇j
= δij . (28)

Multipling both sides of this relation by ∂ψj/∂zb and summing over j we find Ri
a = ∂ψi/∂za ,

so that

θ̂ i = ∂ψi

∂za
θa + Si

µη
µ. (29)

Paralleling the procedure followed for the vertical endomorphism, a connection � on
J 1τ → E restricts to a connection on the bundle C → E according to the relation

�̂(X) = P ◦ �(X) ∀ X ∈ D(C).

From (5) and (25) we find the coordinate expression

�̂ = �a ⊗ ∂

∂za
�a = 9a

i �̂
i = dza + �a

0 dt + �a
i dqi (30)

with

�a
0 = 9a

i

(
∂ψi

∂t
+ �i

0

)
�a

j = 9a
i

(
∂ψi

∂qj
+ �i

j

)
. (31)

Let �̂∗ : T ∗C → T ∗C be the dual of �̂. Its image is a sub-bundle of T ∗C denoted by F(C),
with local basis provided by the 1-forms �a .

In summary, we have that T ∗C decomposes into a direct sum of vector bundles, namely,

T ∗C = F(C) ⊕ V ∗C ⊕ Ko ⊕ 〈dt〉. (32)

For, the connection �̂ splits T ∗C into the sum of F(C) and the bundle of semi-basic forms
over E. This latter, in turn, decomposes into the direct sum of the contact bundle over C and
〈dt〉. Finally, lemma 1 leads to the four-way split (32). From previous considerations it is also
clear that the 1-forms

�a, θa, ηµ, dt (33)

provide a local basis of T ∗C adapted to this decomposition. A straightforward computation
shows that a 1-form ω = ω0 dt + ωi dqi + ωa dza on C can be written in terms of this basis as
follows:

ω = ωa�
a + (ωi − �b

i ωb)
∂ψi

∂za
θa + (ωi − �b

i ωb)S
i
µη

µ + [ω0 + ωiψ
i − ωa(�

a
0 + �a

i ψ
i)] dt.

(34)

3.2. Constrained dynamics

Let orth(H) be the sub-bundle of T J 1τ |C which is orthogonal to H with respect to �, that is,

X ∈ orth(H) iff �(X, Y ) = 0 ∀ Y ∈ H.

The results of the previous section are completed by the following theorem on the dynamics
of a constrained system.
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Theorem 1. The intersection T C ∩ orth(H) is a one-dimensional distribution on C spanned
by a (unique) SODE field ξ̂ on C (i.e. a vector field ξ̂ on C such that ξ̂� dt = 1 and J (̂ξ) = 0).

Proof. From the definition of �, taking into account that Vπ |C ⊂ H , we have that
X ∈ orth(H) implies J (X) = 0. Hence �(X, Y ) = g(�(X), J (Y )) = 0 for all Y ∈ H ,
so that �(X)′ = 0. It follows that X ∈ T C ∩ orth(H) iff

J (X) = 0 �̂(X) = 0 (35)

i.e. iff X is annihilated by all contact forms on C and all forms in F(C). Recalling (32) we
conclude that T C ∩ orth(H) is a one-dimensional distribution. Consequently, a SODE field ξ̂

on C which spans T C ∩ orth(H), if it exists, is necessarily unique.
To prove the existence of ξ̂ , we consider a coordinate neighbourhood in which C is

represented by equations (17). On this neighbourhood we can certainly find such a SODE
field ξ̂ . This is the element of the basis dual to (33) with ξ̂� dt = 1. Actually, if
X = X0∂/∂t + Xi∂/∂qi + Xa∂/∂za is the local expression of a vector field X ∈ D(C),
then conditions (35) read

Xi − ψiX0 = 0

Xa + �a
0X

0 + �a
jX

j = 0.

Setting X0 = 1 we find

ξ̂ = ∂

∂t
+ ψi ∂

∂qi
− (�a

0 + �a
j ψ

j )
∂

∂za
. (36)

Now, a partition of unity argument shows that we may find a global SODE field over C by
gluing together these local solutions. �

It is perhaps worth emphasizing that the condition X ∈ orth(H) is equivalent to J (X) = 0
and �(X)′ = 0. The first condition implies that, as in the non-constrained case, X belongs to
the (n + 1)-dimensional distribution spanned by J 2τ . The condition �(X)′ = 0 expresses the
principle of virtual work. More precisely, if X ∈ TzC is an infinitesimal possible evolution of
the system from the kinetic state z ∈ C, then �(X) is the force that is needed in order for the
non-constrained system to undergo that infinitesimal evolution. The quantity g(�(X), J (Y )) is
the elementary work performed by the force of constraint on the Chetaev virtual displacement
J (Y ). Thus the condition �(X)′ = 0 means that the constraints do not work on the class
of chosen virtual displacements. Theorem 1 therefore shows in what way the principle of
virtual work makes the constrained dynamics determined; the motions of a system with ideal
constraints (in the Chetaev sense) are the integral curves of the unique SODE field on C which
spans the one-dimensional distribution T C∩orth(H). Note also that, as in the non-constrained
case, these curves can be regarded as geodesics of the connection �̂ on the bundle C → E

induced by the dynamical connection (8).
Now let �̂ be the pull-back of the 2-form � by i and let orth(K) be the orthogonal

sub-bundle of the distribution K with respect to �̂.

Theorem 2. K ∩ orth(K) = T C ∩ orth(H).

Proof. Taking into account (23), the evaluation of � on a pair of vector fields X, Y ∈ D(J 1τ)

reads

�(X, Y ) = g(�(X)′, J (Y )′) − g(J (X)′, �(Y )′) + g(�(X)⊥, J (Y )⊥) − g(J (X)⊥, �(Y )⊥).
(37)
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Recalling that a vector field X ∈ D(C) is a section of K iff J (X)⊥ = 0, we have
�̂(X, Y ) = ĝ(�̂(X), Ĵ (Y )) − ĝ(Ĵ (X), �̂(Y )) for every pair of vector fields X, Y ∈ D(C)

taking values into K . Using the arbitrariness of Y ∈ K and proceeding as in the proof of
theorem 1, we find that X ∈ K ∩ orth(K) iff J (X)⊥ = 0, Ĵ (X) = 0 and �̂(X) = 0, that is,
iff conditions (35) hold. �

Some remarks derived from theorem 2 are worth making here. Recall that if S is a
submanifold of C and �S is the pull-back of �̂ by the natural inclusion, then Ker(�S) =
T S ∩ orth(T S). Therefore, if S is an integral manifold of the distribution K we have the
equality K ∩ orth(K) = Ker(�S). Hence the portion of the constrained dynamics lying on S

is described by the kernel of the 2-form �S . This means that if C, in particular, is integrable, all
properties of the non-constrained motion also apply to the constrained one. On the other hand,
if C is not integrable the motion of the constrained system is still defined by a one-dimensional
distribution, namely, K ∩orth(K). However, this is no longer in general the kernel of a 2-form
induced only by �.

The following result, which also extends theorem 1 of [30] to the class of non-Lagrangian
systems, is an immediate consequence of the previous theorems.

Corollary 1. There exists a unique vector field ξ̂ on C such that ξ̂� dt = 1, ξ̂ ∈ K and
ξ̂��̂ ∈ Ko. In addition, ξ̂ is then necessarily a SODE field on C.

To close this section we now study further properties of �̂. First of all, we give its
expression in terms of the basis (33). In accordance with (34), we write the 1-forms �̂i = i∗�i

as follows:

�̂i = ∂ψi

∂za
�a + �̃i

where �̃i are semi-basic forms over E whose explicit form is of no importance here. Recalling
(11) and (29) we obtain

�̂ = gij

(
∂ψi

∂za
�a + �̃i

)
∧
(
∂ψj

∂zb
θb + Sj

µη
µ

)
.

By means of (28) and the relation 9a
i �̃

i = 9a
i (�̂

i −�a) = 0, two terms on the right-hand side
vanish so that we find

�̂ = gab�
a ∧ θb + gijS

j
µ�̃

i ∧ ηµ. (38)

Next, we study the condition

d�̂ ∈ dI = {dω : ω ∈ I}. (39)

This condition will play a role in the subsequent discussion on symmetries and invariants of a
non-holonomic system. Also it characterizes the class of SODE fields ξ̂ on C for which there
exists a non-holonomic Lagrangian [23] in the following sense.

Theorem 3. Let �̂ be the 2-form (38) and ξ̂ the corresponding SODE field on C according to
corollary 1. If condition (39) holds then there exists, at least locally, a function l ∈ C∞(C)

and a Chetaev form η ∈ Ko such that �̂ − dβ ∈ I where β is given by

β = l dt +
∂l

∂za
θa + η.
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Proof. Condition (39) ensures that there exists locally a 1-form α such that �̂ = dα + ρ for
some form ρ ∈ I. Moreover, since the evaluation of �̂ on every pair of vertical fields vanishes,
we can find locally a function G ∈ C∞(C) such that X�α = X(G) for all X ∈ VC. Putting
β = α − dG we have X�β = 0 for all X ∈ VC, so that in terms of the basis (33) β takes the
form

β = βaθ
a + βµη

µ + (̂ξ�β) dt.

By defining l = ξ̂�β we see that

ξ̂��̂ = Lξ̂β − dl + ξ̂�ρ.
Writing out this relation in terms of the basis (33) and equating the coefficients of �a we obtain
βa = ∂l/∂za . This completes the proof of the theorem. �

A glance at (38) shows that (39) is satisfied if gab�
a ∧ θb is closed. Note also that (39) is

trivially satisfied if d� = 0. As we noted in the previous section, this is (locally) equivalent
for the non-constrained system to admit a Lagrangian formulation. If L ∈ C∞(J 1τ) is a
Lagrangian, then the 1-form β is given by

ω̂L = L̂ dt +
∂L
∂q̇i

θ̂ i = L̂ dt +
∂L̂
∂za

θa +
∂L
∂q̇i

Si
µη

µ.

4. Symmetries and first integrals

Motivated by [5], in this section we consider a set of vector fields on C which directly generate
first integrals of the SODE field ξ̂ . These vector fields are related to a generalized version
of Noether’s theorem and its converse for non-conservative systems with non-holonomic
constraints (see, e.g., [16]).

4.1. Generating first integrals

To begin with, let us introduce some preliminary definitions.

Definition 1. Z ∈ D(C) is a dynamical symmetry iff
[
Z, ξ̂

] = ĥξ with h ∈ C∞(C).
Z ∈ D(C) is a trivial symmetry iff Z = ĥξ with h ∈ C∞(C) or, equivalently, iff Z is a

section of K ∩ orth(K).
Z ∈ D(C) is a conformal symmetry iff LZK

o ⊂ Ko and LZ�̂−k�̂ ∈ I for some function
k ∈ C∞(C), where I is the ideal generated by the module of Chetaev forms. In particular, we
call Z a symmetry if the latter condition is replaced by LZ�̂ ∈ I.

Corollary 2.

(a) Z ∈ D(C) is a dynamical symmetry iff
[
Z, ξ̂

] ∈ K and
[
Z, ξ̂

]��̂ ∈ Ko.
(b) Each conformal symmetry is a dynamical symmetry.

The proof of (a) is an immediate consequence of corollary 1. Statement (b) follows from (a)
by noticing that for each Z ∈ D(C), LZK

o ⊂ Ko iff LzK ⊂ K , and by using the formula [17][
Z, ξ̂

]��̂ = LZ(̂ξ��̂) − ξ̂�LZ�̂. (40)

We now consider the set of vector fields Z ∈ D(C) such that

Z ∈ K (41)

d(Z��̂) ∈ dKo = {dη : η ∈ Ko}. (42)
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We shall denote this set by V . As is easily seen, V is a linear space over R which contains all
trivial symmetries of ξ̂ .

By Poincaré’s lemma, for each Z ∈ V there exists (at least locally) a function F ∈ C∞(C)

which is related to Z according to the relation

Z��̂ − dF ∈ Ko. (43)

Then corollary 1 implies that ξ̂ (F ) = 0, i.e. F is a first integral of ξ̂ . Conversely, we have the
following theorem.

Theorem 4. Let ω be a 1-form on C. Then ξ̂�ω = 0 iff Z��̂ − ω ∈ Ko for some vector field
Z ∈ D(C) taking values into K . In particular, for every first integral F ∈ C∞(C) of ξ̂ there
exists a vector field Z ∈ K such that condition (43) holds, hence Z ∈ V .

Proof. From corollary 1, it is clear that if Z��̂ − ω ∈ Ko for some vector field Z ∈ K then
ξ̂�ω = 0.

Conversely, if ξ̂�ω = 0 then ω takes the form ω = Ba�
a + Caθ

a + Dµη
µ for some

coefficients Ba , Ca , Dµ. From (38), the equation Z��̂ − ω ∈ Ko splits up into the following
system:

Z�θa = −gabBb (44)

Z��a = gabCb (45)

Z�ηµ = 0. (46)

It follows that we can find a solution Z ∈ K in a neighbourhood of each point of C. Now a
partition of unity argument enables us to construct a global solution. �

Note that for a given Z ∈ V the corresponding invariant is not uniquely determined. If
F and F ′ are two integrals associated with the same vector field Z then d(F − F ′) ∈ Ko.
Conversely, it follows from (43) and corollary 1 that for a given invariant F of ξ̂ the vector
field Z ∈ V will be determined up to a trivial symmetry of ξ̂ . This can be seen also in
local coordinates using (44)–(46). By replacing the 1-form ω in these expressions with the
differential dF of an invariant and writing out dF in terms of the basis (33), straightforward
algebra leads to

Zi = ψiZ0 − ∂ψi

∂za
gab ∂F

∂zb
(47)

Za = −(�a
0 + �a

j ψ
j )Z0 + �a

i

∂ψi

∂zc
gcb ∂F

∂zb
+ gab

(
∂F

∂qi
− �c

i

∂F

∂zc

)
∂ψi

∂zb
. (48)

The above considerations show that there is (at least locally) one-to-one correspondence
between the set of equivalence classes of vector fields in V and the set of equivalence classes of
invariants, where two vector fields in V are equivalent if they differ by a section of K∩orth(K),
whereas two invariants are identified if their differentials differ for a Chetaev form.

4.2. Choosing a Lagrangian

In practical applications we are given a regular Lagrangian L ∈ C∞(J 1τ) and a dissipative
force Q. Then the 2-form � takes the form (14), so that �̂ = dω̂L + �̂Q. Condition (42)
becomes

d(LZω̂L + Z��̂Q) ∈ dKo
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and applying Poincaré’s lemma we see that (at least locally)

LZω̂L + Z��̂Q − df ∈ Ko (49)

for some function f ∈ C∞(C).
Let us write equation (49) in local coordinates. Putting Z = Z0∂/∂t+Zi∂/∂qi +Za∂/∂za ,

using (12) and (15) and writing out (49) in terms of the basis (33), we find the following set of
partial differential equations for Z0, Zj , Za and f :

(L̂ − πjψ
j )

∂Z0

∂za
+ πj

∂Zj

∂za
= ∂f

∂za
(50)[

Z(πj ) + (L̂ − πiψ
i)

(
∂Z0

∂qj
− �b

j

∂Z0

∂zb

)
+ πi

(
∂Zi

∂qj
− �b

j

∂Zi

∂zb

)
+

1

2

(
∂Qi

∂q̇j
− ∂Qj

∂q̇i

)
(Zi − ψiZ0) − QjZ

0

]
∂ψj

∂za
=
(

∂f

∂qj
− �b

j

∂f

∂zb

)
∂ψj

∂za

(51)

Z(L̂) − πjZ(ψj ) + (L̂ − πjψ
j )̂ξ(Z0) + πj ξ̂ (Z

j ) + Qi(Z
i − ψiZ0) = ξ̂ (f ). (52)

Here we have the set πj = i∗(∂L/∂q̇j ). Note that (50) and (52) do not involve the coefficients
Za . Moreover, whenever (Z0, Zi, f ) is a solution of these equations, (51) immediately
furnishes the remaining components Za . Equations (50) and (52) are the so-called generalized
Killing equations for Noether symmetries of non-conservative non-holonomic systems.

Further insight in the structure of solutions of (50)–(52) can be obtained by considering
the formula (40), which in the present case becomes after straightforward algebra[

Z, ξ̂
]��̂ = LZ(̂ξ��̂) − Lξ̂ (Z��̂) − ξ̂�Z� d�̂Q.

Writing out this equality in terms of the basis (33) and using (38) and (15), we obtain by
equating the coefficients of �a ,

gab9
b
i

[
Z(ψi) − ξ̂ (Zi) + ψiξ̂ (Z0)

] = −(̂ξ��̂)µ
∂φµ

∂q̇i

(
∂Zi

∂za
− ψi ∂Z

0

∂za

)
+

1

2

(
∂Qj

∂q̇i
+

∂Qi

∂q̇j

)
∂ψi

∂za
(Zj − ψjZ0). (53)

As is easily seen, this relation enables us to determine the components Za of Z in terms of
Z0 and Zi only. Therefore, it can be used in substitution of equation (51). Note that if Z is
a projectable vector field onto E (i.e. Z0 and Zi do not depend on velocities), then the term
9a

i

[
Z(ψi) − ξ̂ (Zi) + ψiξ̂ (Z0)

]
on the left-hand side of (53) can be written more concisely as

P(Z − Ż), where Ż denotes the natural lifting on J 1τ of the projection of Z.
Rewriting (49) we obtain

Z� dω̂L + Z��̂Q − d(f − Z�ω̂L) ∈ Ko.

With (14) this becomes

Z��̂ − d(f − Z�ω̂L) ∈ Ko

and a comparison with (43) shows that, up to a function whose differential belongs to the
Chetaev bundle, the invariant generated by Z is given by

F = f − Z�ω̂L = f − L̂Z0 − πi(Z
i − ψiZ0). (54)

Hence, whenever Z and f is a solution of (50), (52) and (46), equation (54) yields a first
integral of ξ̂ .
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4.3. Noether’s theorem

In the previous discussion we saw that the components Z0 and Zi of a vector field Z ∈ V satisfy
equations (50) and (52), for some function f . Here we prove the converse of this statement.

Theorem 5. If Z0, Zi and f satisfy equations (50), (52) and (46), then with Za given by (53)
we obtain a vector field Z ∈ V .

Proof. A simple computation shows that (50) and (52) can be rewritten in a concise form as
follows:

∂

∂za
�(LZω̂L − df ) = 0 (55)

ξ̂ (f − Z�ω̂L) = 0. (56)

From (55) it immediately follows that

∂

∂za
�(Z��̂ − dF) = 0

where F = f −Z�ω̂L is a first integral of ξ̂ in view of (56). This equation in turn, along with
(46), leads to (47). On the other hand, we know from theorem 4 that a vector field Z̃ ∈ V
exists which satisfies

Z̃�(dω̂L + �̂Q) − dF ∈ Ko.

We now prove that Z = Z̃ − ĥξ for some function h, so that Z belongs to V .
Since Z̃ also satisfies (47), we have that Z̃i − ψiZ̃0 = Zi − ψiZ0. Thus defining a

function h = Z̃0 − Z0, we can write Zi = Z̃i − ψih. Taking into account that both Za and
Z̃a satisfy (53) in terms of Z0, Zi and Z̃0, Z̃i , respectively, an immediate computation gives
Za = Z̃a + (�a

0 + �a
j ψ

j )h. This completes the proof that Z = Z̃ − ĥξ . �
By virtue of the equivalence established in this section, in practical applications the

problem of finding a vector fieldZ ∈ V may therefore be approached by solving equations (50),
(52) and (46).

4.4. Further properties of vector fields in V

The vector fields in V are not, in general, dynamical symmetries. However, assume that C is
integrable and that condition (39) holds. Then we have

LZ�̂ = d(Z��̂) + Z� d�̂ ∈ I (57)

so that each Z ∈ V is a symmetry, and hence a dynamical symmetry by virtue of corollary 2,
(b). Actually, let iS : S ↪→ C be an integral manifold of K and �S = i∗S�̂. From (57) and
theorem 3 we find LZ�S = i∗SLZ�̂ = 0 with

�S = i∗S(dβ + ρ) = dβS = d

(
lS dt +

∂lS

∂q̇a
θa

)
and lS = i∗S l. Here the velocities q̇a play the role of the coordinates za on S. Hence, in the
case where C is integrable and d�̂ ∈ dI we recover the characterization of Noether symmetry
for holonomic systems.
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Another consequence of these assumptions concerns the Lie algebra structure of V . In
general, V is not closed under the Lie bracket. In fact, for each Z, Z′ ∈ V we have

[Z,Z′]��̂ = LZ(Z
′��̂) − Z′�LZ�̂

= LZ(Z
′��̂) − Z′�Z� d�̂ − Z′� d(Z��̂).

By taking the exterior derivative of both sides we obtain

d([Z,Z′]��̂) = LZ d(Z′��̂) − LZ′ d(Z��̂) − d(Z′�Z� d�̂)

and we see that the right-hand side belongs to dKo if C is integrable and d�̂ ∈ dI. Thus V is
closed under the Lie bracket.

Going back to the general case, suppose now that the SODE field ξ̂ (36) satisfies the
conditions

Lξ̂K
o ⊂ Ko (58)

Lξ̂ �̂ − k�̂ ∈ I (59)

with k ∈ C∞(C), i.e. ξ̂ is a conformal symmetry of �̂. Putting l = exp(h), with h ∈ C∞(C)

a (local) solution of ξ̂ (h) = k, we obtain

ξ̂ (l) = kl. (60)

Then we have the following theorem.

Theorem 6. For each Z ∈ V the vector field lZ is a dynamical symmetry of ξ̂ . If, in particular,
ξ̂ is a symmetry (i.e. k = 0), then every Z ∈ V is a dynamical symmetry.

Proof. Condition (58) immediately implies
[
lZ, ξ̂

] ∈ K . Moreover, we have[
lZ, ξ̂

]��̂ = LlZ(̂ξ��̂) − ξ̂�LlZ�̂

= lZ�Lξ̂ �̂ − Lξ̂ (lZ��̂)

= (−ξ̂ (l) + kl)Z��̂ + a Chetaev form

and a glance at (60) shows that
[
lZ, ξ̂

]��̂ ∈ Ko. Hence lZ is a dynamical symmetry by virtue
of corollary 2, (a).

If ξ̂ is a symmetry then the function l is a first integral of ξ̂ . It follows that
[
lZ, ξ̂

] =
l
[
Z, ξ̂

]
, and hence Z is a dynamical symmetry since lZ is. �

We conclude this section by giving a property of V concerning its relation with symmetry
vector fields.

Theorem 7. If Y ∈ D(C) is a symmetry, then it leaves V invariant, i.e. [Y,Z] ∈ V for each
Z ∈ V . Moreover, if F is a first integral of ξ̂ generated by Z then Y (F ) is the corresponding
first integral generated by [Y,Z].

Proof. Since Y is a symmetry it leaves K invariant, hence [Y,Z] ∈ K for each Z ∈ V .
Moreover, from the relation

[Y,Z]��̂ = LY (Z��̂) − Z�LY �̂

we see that if F is the invariant corresponding to Z, then [Y,Z] satisfies condition (43) with
Y (F ) as the corresponding invariant. �
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5. Examples

Example 1. Let D be a vector field on E with coordinate expression D = ∂/∂t + Di∂/∂qi

and let Z0 be a function of time t . As is well known (see, for example, [10], p 208), with a
complete (vector field) D we have a trivialization of E, and hence a reference frame.

Consider a mechanical system described (with respect to D) by a Lagrangian L ∈
C∞(J 1τ) and dissipative forces Qi , subject to a kinetic constraint C locally defined by
equation (18). Let Z ∈ K be a vector field on C projecting onto DZ0. Thus Z takes the
local form

Z = Z0 ∂

∂t
+ Z0Di ∂

∂qi
+ Za ∂

∂za

for some coefficients Za , with the Di satisfying the equation

∂φµ

∂q̇i
(Di − ψi) = 0. (61)

Then equation (50) is satisfied with f = 0, whereas (52) becomes

i∗(LḊL)Z0 +
[L̂ + πi(D

i − ψi)
]
Ż0 + Qi(D

i − ψi)Z0 = 0

where Ḋ ∈ D(J 1τ) is the natural lifting on J 1τ of D. For this equation to hold it is enough
that the following relations are satisfied:

LḊL = 0 (62)[L̂ + πi(D
i − ψi)

]
Ż0 + Qi(D

i − ψi)Z0 = 0. (63)

The first condition implies that the vector field D is a symmetry of the Lagrangian. Further
insight into (63) can be obtained by considering the following two cases.

(a) Take Z0 = 1 and gyroscopic forces Qi satisfying the condition Qi(q̇
i − Di) = 0, e.g.

Qi = γij (q̇
j − Dj) with γij = −γji ; then condition (63) holds. From (53) we find

Za = 9a
i

(
Ḋi − ∂ψi

∂t
− ∂ψi

∂qj
Dj

)
and (54) produces the first integral

F = L̂ + πj (D
j − ψj).

(b) Let the Lagrangian take the form

L = 1
2gij (q̇

i − Di)(q̇j − Dj).

Then the term L̂ + πi(D
i − ψi) coincides with −L̂, so that (63) holds if the dissipative

forces are of the form

Qi = −1

2

∂L
∂q̇i

Ż0

Z0
.

Note that these are dissipative forces of the Rayleigh type with the dissipative function
−LŻ0/2Z0 [1]. Solving equation (53) we find

Za = 9a
i

[(
Ḋi − ∂ψi

∂t
− ∂ψi

∂qj
Dj

)
Z0 +

1

2
(Di − ψi)Ż0

]
.

Moreover, to each vector field Z constructed in this way there corresponds a first integral
F = L̂Z0.
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If we work in a coordinate chart in which the coefficients Di vanish identically, then
conditions (61) and (62) take the simple form ψi∂φµ/∂q̇i = 0 (homogeneity of the constraint
functions with respect to the q̇ i) and ∂L/∂t = 0 (time independence of the Lagrangian).

Example 2. Consider a planar two-particle system whose Lagrangian is

L = T − V = 1
2

4∑
j=1

ẋ2
j − 1

ρ2
ρ2 =

4∑
j=1

x2
j .

The system is subject to a kinetic constraint

φ(t, xj , l1, l2) = 0 (64)

where l1 = x2ẋ1 − x1ẋ2, l2 = x4ẋ3 − x3ẋ4 and φ is a homogeneous function with respect to l1
and l2 (see [9] for an interesting application of angular momentum constraints to the reduction
of rigid-body dynamics).

Here we take E ∼= R × R
4, with coordinates (t, xj ). It is easy to verify that Z0 = t ,

Zj = xj/2, f = 0 is a solution of equations (46), (50) and (52). Then (54) produces the first
integral

F = (T + V )t − 1
2

4∑
j=1

ψjxj (65)

and from (53) we find

Za =
4∑

j=1

9a
j

(
−ψj

2
− ∂ψj

∂t
−

4∑
k=1

∂ψj

∂xk

xk

2

)
. (66)

Now let ρ1, ϑ1 and ρ2, ϑ2 be polar coordinates corresponding to the Cartesian coordinates
of the particles. In terms of these coordinates, we can write the constraint equation in the form

φ(t, xj ,−ρ2
1 ϑ̇1,−ρ2

2 ϑ̇2) = 0.

By means of the rank condition (19), we can solve this equation locally with respect to one of
the angular velocities ϑ̇1 and ϑ̇2. If, for example, ϑ̇2 = ϕ(t, xj , ρ

2
1 ϑ̇1)/ρ

2
2 , we let ρ̇1, ρ̇2, ϑ̇1

play the role of the za . A straightforward computation leads then to the following expressions
for the functions ψj :

ψ1 = ρ̇1
x1

ρ1
− x2ϑ̇1 ψ2 = ρ̇1

x2

ρ1
+ x1ϑ̇1

ψ3 = ρ̇2
x3

ρ2
− ϕ

x4

ρ2
2

ψ4 = ρ̇2
x4

ρ2
+ ϕ

x3

ρ2
2

and the first integral (65) takes the form

F = (T + V )t − 1

4

dρ2

dt
.

If, in particular, the function φ does not depend on t and xj , then (66) yields Za = −9a
i ψ

i

and a straightforward computation yields Z1 = −ρ̇1, Z2 = −ρ̇2 and Z3 = −ϑ̇1.

Example 3. In this example we consider the tippe top. We make the following assumptions.
The top is a sphere whose centre of mass does not coincide with its geometrical centre. During
its motion the body remains in contact with a fixed horizontal plane. The friction at the contact
point prevents the top from sliding.
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Introduce the Euler anglesψ , θ , φ using the principal axis body frame relative to an inertial
reference frame (in the notation used here, φ is the angle of rotation about the symmetry axis of
the top). These angles together with two horizontal coordinates (x, y) of the centre of mass are
coordinates in the configuration space R

2×SO(3) of the tippe top. HereE ∼= R×R
2×SO(3).

The Lagrangian of the top is computed to be

L = 1
2 (A sin2 θ + C cos2 θ)ψ̇2 + 1

2 (A + ma2 sin2 θ)θ̇2 + 1
2Cφ̇2 + 1

2m(ẋ2 + ẏ2)

+C cos θψ̇φ̇ − mga cos θ (67)

where A and C are the principal moments of inertia of the body, m is its total mass and a is
the distance of the centre of mass from the centre of the sphere. The constraints are

ẋ + sinψ(−r + a cos θ)θ̇ + sin θ cosψ(rφ̇ + aψ̇) = 0 (68)

ẏ − cosψ(−r + a cos θ)θ̇ + sin θ sin ψ(rφ̇ + aψ̇) = 0. (69)

Note that the symmetry group of the Lagrangian and the constraints is the subgroup
SE(2) × SO(2) of R

2 × SO(3) generated by translations parallel to the horizontal plane, by
rotations about the vertical axis through the origin of the inertial frame and by rotations around
the symmetry axis of the top. The action of an element (a, b, α, β) ∈ SE(2)×SO(2) is given
by

(x, y, ψ, θ, φ) 
→ (x cosα − y sin α + a, x sin α + y cosα + b,ψ + α, θ, φ + β). (70)

For any element ζ in the Lie algebra of SE(2) × SO(2) we denote by Yζ the corresponding
infinitesimal generator. Setting ζ = (a′, b′, α′, β ′) we obtain the vector field on E given by

Yζ = (−yα′ + a′)
∂

∂x
+ (xα′ + b′)

∂

∂y
+ α′ ∂

∂ψ
+ β ′ ∂

∂φ
. (71)

Let ψ̇ , θ̇ and φ̇ play the role of za in the general theory. We seek solutions to equations (46),
(50) and (52) which are vector fields tangent to the orbits of the symmetry group. Writing out
(46) in terms of the infinitesimal generators, we find the equations

−yα′ + a′ + α′a sin θ cosψ + β ′r sin θ cosψ = 0 (72)

xα′ + b′ + α′a sin θ sin ψ + β ′r sin θ sin ψ = 0. (73)

Using these equations, we can express the vector fields we are looking for as pointwise linear
combinations of the above infinitesimal generators (cf [3]). Clearly, equation (50) is satisfied
with f = 0 since Z0 = 0 and Zi do not depend on the coordinates za . Equation (52) reduces
to

∂L
∂qi

Zi + πi

∂Zi

∂qj
ψj = 0 (74)

or, more concisely, i∗(LẎζ
L) = 0. Although SE(2) × SO(2) is a symmetry group of the

Lagrangian, equation (74) need not be satisfied in general since we are working with pointwise
linear combinations of the infinitesimal generators. However, the infinitesimal generator

r
∂

∂ψ
− a

∂

∂φ

of the Lie algebra element a′ = ry, b′ = −rx, α′ = r , β ′ = −a satisfies equation (74). Note
that it rotates the top while fixing the centre of mass. The corresponding first integral, which
is known as Jellet’s integral (see [3] and references therein), is given by equation (54):

F = aC(ψ̇ cos θ + φ̇) − r
[
(A sin2 θ + C cos2 θ)ψ̇ + C cos θφ̇

]
.

This quantity is nothing but the projection of the angular momentum onto the vector �GT ,
where G is the centre of mass and T is the instantaneous point of contact of the top.
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Example 4. A simple example that illustrates the use of equations (47) and (48) is the following
example of a non-holonomically constrained free particle [26]. Consider a particle with the
Lagrangian L = 1/2(ẋ2+ẏ2+ż2) and the non-holonomic constraint ż = yẋ. HereE ∼= R×R

3,
with coordinates (t, x, y, z). Let ẋ, ẏ play the role of the za in our discussion of the general
theory. Then (16) takes the form

ψ1 = ẋ ψ2 = ẏ ψ3 = yẋ.

According to (36), the SODE field on C here becomes

ξ̂ = ∂

∂t
+ ẋ

∂

∂x
+ ẏ

∂

∂y
+ yẋ

∂

∂z
− yẋẏ

1 + y2

∂

∂ẋ
. (75)

As we know from example 1, a first integral of (75) is provided by the energy

L̂ = 1
2

[
(1 + y2)ẋ2 + ẏ2

]
.

From (47) and (48) we find all vector fields generating the energy integral, which are given by

Z = Z0 ∂

∂t
+ (Z0 − 1)

[
ẋ

∂

∂x
+ ẏ

∂

∂y
+ yẋ

∂

∂z
− yẋẏ

1 + y2

∂

∂ẋ

]
.

The differential equations corresponding to the vector field (75) are given by

ẍ +
yẋẏ

1 + y2
= 0 ÿ = 0 ż = yẋ.

Note that the first equation is equivalent to d/dt
[
ẋ(1 + y2)1/2

] = 0, so that the function

F = ẋ(1 + y2)1/2 (76)

is a first integral of ξ̂ . This integral was used in the Bates–Sniatycki reduction [2]. According
to equations (47) and (48), the (unique) vertical vector field corresponding to the invariant (76)
is given by

Z = − 1

(1 + y2)1/2

∂

∂x
− y

(1 + y2)1/2

∂

∂z
.

Also note that in this case LZω̂L = 0, hence F = Z�ω̂L.
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